3.2.3. Physical methods.
3.2.3.物理方法。
The aforementioned limitation on biofilm cell counting accuracy can be overcome by using flow cytometry in combination with bacterial cell staining with viability fluorophores (88). In addition to a very quick and precise cell counting, using an appropriate dye, this methodology also allows an evaluation of the physiological state of cells (88). This methodology has been suggested as a very promising approach to study, in almost real time, phage-biofilm interactions (89).
上述对生物膜细胞计数准确性的限制可以通过流式细胞仪结合细菌细胞活力荧光染色法来克服 ( 88)。除了使用适当的染料进行快速精确的细胞计数外,这种方法还能评估细胞的生理状态 ( 88)。这种方法几乎可以实时研究噬菌体与生物膜之间的相互作用 ( 89)。
Other physical methods can be used to assess biofilm biomass, such as wet or dry weight measurements. Sillankorva et al. (90) used the dry weight method to calculate the amount of biofilm biomass reduction caused by a Pseudomonas fluorescens phage when interacting with biofilms of different stages of maturity.
其他物理方法也可用于评估生物膜的生物量,例如湿重或干重测量。Sillankorva 等人 ( 90) 使用干重法计算荧光假单胞菌噬菌体与不同成熟阶段的生物膜相互作用时造成的生物膜生物量减少量。
In the past decade, a more sensitive method based on electrical impedance has also been applied to study the effect of phages against biofilms. This methodology allows a real-time analysis of different electric parameters that can be used to assess phage efficacy against biofilms (91) or to measure physiological modifications of matrix composition after phage challenge (92).
在过去十年中,一种基于电阻抗的更敏感方法也被用于研究噬菌体对生物膜的影响。这种方法可对不同的电参数进行实时分析,用于评估噬菌体对生物膜的功效(91)或测量噬菌体挑战后基质成分的生理变化(92)。
3.2.4. Chemical methods.
3.2.4.化学方法。